
cs6363 1

Principles of Program
Analysis

An overview of approaches beyond
loop analysis and optimizations

cs6363 2

The Nature of static analysis
--- approximation
 Static program analysis --- predict the dynamic behavior

of programs without running them
 At each execution step, what is the value of each variable?

int x, y, z;
read(&x);
if (x>0) { y=x; z = 1}
else { y= - x; z = 2}

 Cannot be answered precisely as program input is unknown
 We donʼt know the value of x, and therefore cannot predict which

branch will be taken (whether the value of x is greater than 0)
 However, we can predict all the possible values for z and that y is

>= 0 at the end of code.
 Program analysis tries to

 Give approximate answers
 Prove properties of variables, functions, types

cs6363 3

The Nature of Approximation
--- may and must analysis
 There are two ways to approximate behavior of programs

 Over approximation: what may happen when all possible
inputs are considered?

 The answer is a superset of what happens at runtime

 Under approximation: what must always happen in spite of
different inputs?

 The answer is a subset of what happens at runtime

 What approximation to use is problem specific
 Should always err on the safe side

 Example: if we want to remove all useless evaluations in the
program, should we find evaluations that may or must be useless?

 The relation between may and must analysis
 Find all evaluations that are always useless (must analysis)
 <=> find all evaluations that may be useful (may analysis)

cs6363 4

The Precision of Approximation ---
How input sensitive is the analysis?
 Flow sensitivity: Is solution sensitive to program control flow?

 Flow-insensitive analysis
 Example: what variables may be accessed by a code?
 Solution: find all the variables that appear in the code

 Flow sensitive analysis
 Example: what values a variable may have at each program point
 A different solution must be found for each program point

 Context sensitivity: Is solution sensitive to the calling context?
 Context-insensitive

 A single solution is computed for each function, no matter who calls it
 Context-sensitive

 Different solutions are computed for different chains of callers

 Path sensitivity? Is solution sensitive to execution paths?
 Path sensitive: different solutions are computed for different

paths from program entry to each statement

cs6363 5

Scopes of Program Analysis
 What code are examined to find the solution?

 Local analysis
 Operate on a straight-line sequence of statements (a basic block)
 Often used as basis for more advanced analysis approaches

 Regional analysis
 Operate on code with limited control flow, e.g., loops, conditionals
 Useful for special-purpose optimizations (e.g., loop optimizations)

 Global (intra-procedural) analysis
 Operate on a single procedure/subroutine/function
 Required by most flow-sensitive analysis problems

 Whole-program (inter-procedural) analysis
 Operate on an entire program (all sources must be available)
 Required by context and path sensitive analysis

cs6363 6

Common Approaches to Program
Analysis
 A family of techniques

 Data flow analysis: operate on control-flow graph
 Define a set of data to evaluate at entry and exit of each basic block
 evaluate the flow of data between pred/succ basic blocks

 Constraint based analysis
 For each program entity to be analyzed, define a set of constraints involving

information of interest
 Solve the constraint system via mathematical approaches

 Abstract interpretation
 Define a set of data to evaluate at each program point; Map each

statement/construct to a finite sequence of semantic actions
 Statically interpret each instruction in program

 Type and effect systems
 Categorize different properties into a collection of types/groups
 Infer the type/group of each program entity from how it is used

 Techniques differ in algorithmic methods, semantic foundations,
language paradigms

cs6363 7

Example dataflow analysis: Reaching
definition analysis

 [y := x;]1
 [z := 1;]2
 while [y > 0]3 {
 [z := z * y;]4
 [y := y - 1;]5
 }
 [y = 0;]6

Domain: 1 2 4 5 6
 y z z y y

∅

∅

∅

∅

RD

1,2,4,51,2,4,516B4

1,2,4,51,2,4,51,2,64,5B3

1,2,4,51,2,4,5∅∅B2

∅∅5,6,41,2B1

RDRDDefKillDEDef

[y := x;]1
[z := 1;]2

[y > 0]3

[z := z * y;]4
[y := y - 1;]5

[y = 0;]6

B1

B2

B3

B4

cs6363 8

Foundation of data-flow analysis---
Lattices
 An ordered set (L, ≤, V, Λ) is a lattice

 If x Λ y and x V y exist for all x,y∈L
 The join operation V: x V y is the least element >= x and y
 The meet operation Λ : x Λ y is the greatest element <= x and y

 An lattice (L,≤, Λ) is a complete lattice if
 Each subset Y ⊆ L has a least upper bound and a greatest lower bound

 LeastUpperBound(Y) = Vm∈Y m; GreatestLowerBound(Y) = Λ m∈Y m
 All finite lattices are complete
 Example lattice that is not complete: the set of all integers I

 For any x, y∈I, x Λ y = min(x,y), x V y = max(x,y)
 But LeastUpperBound(I) does not exist

 Example infinite complete lattice I U {\infty, -\infty}
 Each complete lattice has

 A top element: the least element
 A bottom element: the greatest element

cs6363 9

Termination of Dataflow Analysis
 A complete lattice L satisfies the finite ascending chain condition if

each ascending chain of L eventually stabilizes
 A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y
 If l1≤ l2 ≤ l3 ≤ … , then there is an upper bound ln = ln+1=ln+2…
 This means starting from an arbitrary element e ∈ L, one can only

increase e by a finite number of times before reaching an upper bound

 Application to Dataflow Analysis: dataflow information will be
lattice values
 Transfer functions operate on lattice values
 Solution algorithm will generate increasing sequence of values at each

program point
 Ascending chain condition will ensure termination

 Can use V (join) or Λ (meet) to combine values at control-flow
join points

cs6363 10

Constraint based Analysis
Example: control-flow analysis
 The problem

 For each function call, what functions may be invoked?
 Syntax-directed analysis

 Reformulate the analysis specification
 Construct a finite set of constraints based on structural induction

 Compute the least solution of the set of constraints
 Each constraint has the form

(sol1 ⊆ sol2) or ({t} ⊆ sol) or ({t} ⊆ sol1 => sol2 ⊆ sol3)
 Each sol is either C(l) (l is an expression, e.g., a call site) or P(x)

(x is a function parameter/function pointer)
 Each t is a function definition

cs6363 11

Constraint-based Analysis
 For each expression/statement, compute a set of constraints

 Function definition
 Cond[(fundef(f,x->e0))l] = Cond[e0] ∪
 { {fundef(f,x->e0)}⊆ C(l) } ∪ { fundef(f,x->e0) ⊆ P(f) }
 Function call (allow functions to return functions as results)
 Cond[((e1)l1 (e2)l2)l3] = Cond[e1] ∪ Cond[e2] ∪
{ {t} ∈ C(l1)=>C(l2) ⊆ P(x) ∀ t = (fundef(f,x->e0) } // parameter
∪ { {t} ∈ C(l1)=> C(l0) ⊆ C(l3) ∀ t = (fundef(f,x->e0)} // result
 If conditional
 Cond [(if (e0)l0 then (e1)l1 else (e2)l2)l3] =

 Cond[e0] ∪ Cond[e1] ∪ Cond[e2] ∪ {C(l2) ⊆ C(l3)} ∪ {C(l2) ⊆ C(l3) }

cs6363 12

Solving the constraints
 Input: a set of constraints for the entire program
 Output: the least solution (C,P) to the constraints
 Idea: equivalent to finding the least fixed point of a

monotone function defined by the constraints
 Straight-forward iterative algorithm has n^5 cost, where n is

the size of the program (expression)
 A more sophisticated algorithm takes n^3 complexity

 The graph-based algorithm
 Build a graph where

 Each node n corresponds to a unique C(l) or P(x) =>val(n)

 Add an edge from node n1 to n2 if any change to val(n1)
may require modifications to val(n2)

 Use a worklist to keep track of nodes to change

cs6363 13

Example abstract interpretation:
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 Define the data to evaluate
 A set of locations for each

pointer variable
 Keep track of constant values

for non-pointer variables
 Define a semantic action for

each statement
 Modifies the location set of

pointer variables
 Allocate new locations

 Limit the number of locations
for each stmt

 Control flow (conditionals,
loops, and function calls)

 Assume all branches are
taken when not sure

cs6363 14

Abstract interpretation of points-to locations
 [h = t = NULL;]1
 [i=0;]2
 if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
[++i]4
if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 else {[t->next = p; t = p;]8
 [++i]4 if [i<N]3;

 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> new[5]
 h -> 0 t -> 0 p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->new[5] p -> new[5]
 Exit loop if evaluation has stopped changing
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}

cs6363 15

Abstract Interpretation
AbstractInterpretation(op)
 if (is_assignment(op))
 modify_memory_from_assignment(memory(op), op)
 else if (is_conditional(op)) then
 AbstractInterpretation(cond(op));
 AbstractInterpretation(tree_branch(op));
 AbstractInterpretation(false_branch(op));
 else if (is_loop(op)) then
 repeat
 start_monitor_all_changes(memory(stmts(op)))
 AbstractInterpretation(stmts(op))
 until nothing changes in memory(stmts(op))
 else if (is_procedural_call(op)) then
 setup_parameters_and_return(op);
 AbstractInterpretation(body(op));
 else …

cs6363 16

Example Solution
Abstract Interpretation
struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

h->new[5]
t->new[5]
p->new[5]

h->new[5]
t->new[5]
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0 p->?
h->0 t->0 p->?
h->0 t->0 p->?

h->? t->? p->?

h->new[5]
t->new[5]
p->new[5]

4

h->new[5]
t->new[5]
p->new[5]

8

h->new[5]
t->new[5]
p->new[5]

7

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

6

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

5

h->{0,new[5]}
t->{0,new[5]}
p->{?,new[5]}

3
2
1

0

Domain: h,t,p

cs6363 17

Example type and effect analysis
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 The type domain: locations
 Each statement that allocates a

new location
 Each variable that has a location

 Examine each statement and
infer a type (a group of
locations) for each pointer
variable
 Each pointer variable can have

only a single type, no matter
where it appears

 Flow insensitive

 If a distinct type is inferred for
each expression, then analysis
is flow sensitive

cs6363 18

Applying type and effect approach to points-
to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels The type domain includes
 NULL, new[5]

 Examine the program text and
union all types (locations) for
each variable
 [h=t=NULL]1

 H->NULL; t->NULL;

 [p = new Cell(i,NULL);]5
 P-> new[5]

 [h = t = p;]7 and [t = p;]8
 Type(p) is a subset of Type(h)
 Type(p) is a subset of Type(t)

 Result:
 h=> {NULL,new[5]}
 t=> {NULL, new[5]}
 p=> new[5]

 Key: define typing rules

cs6363 19

Type Inference based points-to analysis

For each pointer variable v
do
Type(v) = {}

For each operation that
assigns a new set of
locations L to pointer v
do
 Type(v) = Type(v) ∪ L

Flow-insensitive type inference:

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{}
h->{0} t->{0} p->{}

h->{} t->{} p->{}

8

7

6

5

4

3

2
1

0

