
cs6363 1

Principles of Program
Analysis

An overview of approaches beyond
loop analysis and optimizations

cs6363 2

The Nature of static analysis
--- approximation
 Static program analysis --- predict the dynamic behavior

of programs without running them
 At each execution step, what is the value of each variable?

int x, y, z;
read(&x);
if (x>0) { y=x; z = 1}
else { y= - x; z = 2}

 Cannot be answered precisely as program input is unknown
 We donʼt know the value of x, and therefore cannot predict which

branch will be taken (whether the value of x is greater than 0)
 However, we can predict all the possible values for z and that y is

>= 0 at the end of code.
 Program analysis tries to

 Give approximate answers
 Prove properties of variables, functions, types

cs6363 3

The Nature of Approximation
--- may and must analysis
 There are two ways to approximate behavior of programs

 Over approximation: what may happen when all possible
inputs are considered?

 The answer is a superset of what happens at runtime

 Under approximation: what must always happen in spite of
different inputs?

 The answer is a subset of what happens at runtime

 What approximation to use is problem specific
 Should always err on the safe side

 Example: if we want to remove all useless evaluations in the
program, should we find evaluations that may or must be useless?

 The relation between may and must analysis
 Find all evaluations that are always useless (must analysis)
 <=> find all evaluations that may be useful (may analysis)

cs6363 4

The Precision of Approximation ---
How input sensitive is the analysis?
 Flow sensitivity: Is solution sensitive to program control flow?

 Flow-insensitive analysis
 Example: what variables may be accessed by a code?
 Solution: find all the variables that appear in the code

 Flow sensitive analysis
 Example: what values a variable may have at each program point
 A different solution must be found for each program point

 Context sensitivity: Is solution sensitive to the calling context?
 Context-insensitive

 A single solution is computed for each function, no matter who calls it
 Context-sensitive

 Different solutions are computed for different chains of callers

 Path sensitivity? Is solution sensitive to execution paths?
 Path sensitive: different solutions are computed for different

paths from program entry to each statement

cs6363 5

Scopes of Program Analysis
 What code are examined to find the solution?

 Local analysis
 Operate on a straight-line sequence of statements (a basic block)
 Often used as basis for more advanced analysis approaches

 Regional analysis
 Operate on code with limited control flow, e.g., loops, conditionals
 Useful for special-purpose optimizations (e.g., loop optimizations)

 Global (intra-procedural) analysis
 Operate on a single procedure/subroutine/function
 Required by most flow-sensitive analysis problems

 Whole-program (inter-procedural) analysis
 Operate on an entire program (all sources must be available)
 Required by context and path sensitive analysis

cs6363 6

Common Approaches to Program
Analysis
 A family of techniques

 Data flow analysis: operate on control-flow graph
 Define a set of data to evaluate at entry and exit of each basic block
 evaluate the flow of data between pred/succ basic blocks

 Constraint based analysis
 For each program entity to be analyzed, define a set of constraints involving

information of interest
 Solve the constraint system via mathematical approaches

 Abstract interpretation
 Define a set of data to evaluate at each program point; Map each

statement/construct to a finite sequence of semantic actions
 Statically interpret each instruction in program

 Type and effect systems
 Categorize different properties into a collection of types/groups
 Infer the type/group of each program entity from how it is used

 Techniques differ in algorithmic methods, semantic foundations,
language paradigms

cs6363 7

Example dataflow analysis: Reaching
definition analysis

 [y := x;]1
 [z := 1;]2
 while [y > 0]3 {
 [z := z * y;]4
 [y := y - 1;]5
 }
 [y = 0;]6

Domain: 1 2 4 5 6
 y z z y y

∅

∅

∅

∅

RD

1,2,4,51,2,4,516B4

1,2,4,51,2,4,51,2,64,5B3

1,2,4,51,2,4,5∅∅B2

∅∅5,6,41,2B1

RDRDDefKillDEDef

[y := x;]1
[z := 1;]2

[y > 0]3

[z := z * y;]4
[y := y - 1;]5

[y = 0;]6

B1

B2

B3

B4

cs6363 8

Foundation of data-flow analysis---
Lattices
 An ordered set (L, ≤, V, Λ) is a lattice

 If x Λ y and x V y exist for all x,y∈L
 The join operation V: x V y is the least element >= x and y
 The meet operation Λ : x Λ y is the greatest element <= x and y

 An lattice (L,≤, Λ) is a complete lattice if
 Each subset Y ⊆ L has a least upper bound and a greatest lower bound

 LeastUpperBound(Y) = Vm∈Y m; GreatestLowerBound(Y) = Λ m∈Y m
 All finite lattices are complete
 Example lattice that is not complete: the set of all integers I

 For any x, y∈I, x Λ y = min(x,y), x V y = max(x,y)
 But LeastUpperBound(I) does not exist

 Example infinite complete lattice I U {\infty, -\infty}
 Each complete lattice has

 A top element: the least element
 A bottom element: the greatest element

cs6363 9

Termination of Dataflow Analysis
 A complete lattice L satisfies the finite ascending chain condition if

each ascending chain of L eventually stabilizes
 A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y
 If l1≤ l2 ≤ l3 ≤ … , then there is an upper bound ln = ln+1=ln+2…
 This means starting from an arbitrary element e ∈ L, one can only

increase e by a finite number of times before reaching an upper bound

 Application to Dataflow Analysis: dataflow information will be
lattice values
 Transfer functions operate on lattice values
 Solution algorithm will generate increasing sequence of values at each

program point
 Ascending chain condition will ensure termination

 Can use V (join) or Λ (meet) to combine values at control-flow
join points

cs6363 10

Constraint based Analysis
Example: control-flow analysis
 The problem

 For each function call, what functions may be invoked?
 Syntax-directed analysis

 Reformulate the analysis specification
 Construct a finite set of constraints based on structural induction

 Compute the least solution of the set of constraints
 Each constraint has the form

(sol1 ⊆ sol2) or ({t} ⊆ sol) or ({t} ⊆ sol1 => sol2 ⊆ sol3)
 Each sol is either C(l) (l is an expression, e.g., a call site) or P(x)

(x is a function parameter/function pointer)
 Each t is a function definition

cs6363 11

Constraint-based Analysis
 For each expression/statement, compute a set of constraints

 Function definition
 Cond[(fundef(f,x->e0))l] = Cond[e0] ∪
 { {fundef(f,x->e0)}⊆ C(l) } ∪ { fundef(f,x->e0) ⊆ P(f) }
 Function call (allow functions to return functions as results)
 Cond[((e1)l1 (e2)l2)l3] = Cond[e1] ∪ Cond[e2] ∪
{ {t} ∈ C(l1)=>C(l2) ⊆ P(x) ∀ t = (fundef(f,x->e0) } // parameter
∪ { {t} ∈ C(l1)=> C(l0) ⊆ C(l3) ∀ t = (fundef(f,x->e0)} // result
 If conditional
 Cond [(if (e0)l0 then (e1)l1 else (e2)l2)l3] =

 Cond[e0] ∪ Cond[e1] ∪ Cond[e2] ∪ {C(l2) ⊆ C(l3)} ∪ {C(l2) ⊆ C(l3) }

cs6363 12

Solving the constraints
 Input: a set of constraints for the entire program
 Output: the least solution (C,P) to the constraints
 Idea: equivalent to finding the least fixed point of a

monotone function defined by the constraints
 Straight-forward iterative algorithm has n^5 cost, where n is

the size of the program (expression)
 A more sophisticated algorithm takes n^3 complexity

 The graph-based algorithm
 Build a graph where

 Each node n corresponds to a unique C(l) or P(x) =>val(n)

 Add an edge from node n1 to n2 if any change to val(n1)
may require modifications to val(n2)

 Use a worklist to keep track of nodes to change

cs6363 13

Example abstract interpretation:
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 Define the data to evaluate
 A set of locations for each

pointer variable
 Keep track of constant values

for non-pointer variables
 Define a semantic action for

each statement
 Modifies the location set of

pointer variables
 Allocate new locations

 Limit the number of locations
for each stmt

 Control flow (conditionals,
loops, and function calls)

 Assume all branches are
taken when not sure

cs6363 14

Abstract interpretation of points-to locations
 [h = t = NULL;]1
 [i=0;]2
 if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
[++i]4
if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 else {[t->next = p; t = p;]8
 [++i]4 if [i<N]3;

 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> new[5]
 h -> 0 t -> 0 p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->new[5] p -> new[5]
 Exit loop if evaluation has stopped changing
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}

cs6363 15

Abstract Interpretation
AbstractInterpretation(op)
 if (is_assignment(op))
 modify_memory_from_assignment(memory(op), op)
 else if (is_conditional(op)) then
 AbstractInterpretation(cond(op));
 AbstractInterpretation(tree_branch(op));
 AbstractInterpretation(false_branch(op));
 else if (is_loop(op)) then
 repeat
 start_monitor_all_changes(memory(stmts(op)))
 AbstractInterpretation(stmts(op))
 until nothing changes in memory(stmts(op))
 else if (is_procedural_call(op)) then
 setup_parameters_and_return(op);
 AbstractInterpretation(body(op));
 else …

cs6363 16

Example Solution
Abstract Interpretation
struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

h->new[5]
t->new[5]
p->new[5]

h->new[5]
t->new[5]
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0 p->?
h->0 t->0 p->?
h->0 t->0 p->?

h->? t->? p->?

h->new[5]
t->new[5]
p->new[5]

4

h->new[5]
t->new[5]
p->new[5]

8

h->new[5]
t->new[5]
p->new[5]

7

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

6

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

5

h->{0,new[5]}
t->{0,new[5]}
p->{?,new[5]}

3
2
1

0

Domain: h,t,p

cs6363 17

Example type and effect analysis
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 The type domain: locations
 Each statement that allocates a

new location
 Each variable that has a location

 Examine each statement and
infer a type (a group of
locations) for each pointer
variable
 Each pointer variable can have

only a single type, no matter
where it appears

 Flow insensitive

 If a distinct type is inferred for
each expression, then analysis
is flow sensitive

cs6363 18

Applying type and effect approach to points-
to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels  The type domain includes
 NULL, new[5]

 Examine the program text and
union all types (locations) for
each variable
 [h=t=NULL]1

 H->NULL; t->NULL;

 [p = new Cell(i,NULL);]5
 P-> new[5]

 [h = t = p;]7 and [t = p;]8
 Type(p) is a subset of Type(h)
 Type(p) is a subset of Type(t)

 Result:
 h=> {NULL,new[5]}
 t=> {NULL, new[5]}
 p=> new[5]

 Key: define typing rules

cs6363 19

Type Inference based points-to analysis

For each pointer variable v
do
Type(v) = {}

For each operation that
assigns a new set of
locations L to pointer v
do
 Type(v) = Type(v) ∪ L

Flow-insensitive type inference:

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{}
h->{0} t->{0} p->{}

h->{} t->{} p->{}

8

7

6

5

4

3

2
1

0

