Principles ot Program
Analysis

An overview of approaches beyond
loop analysis and optimizations

cs6363

O Static program analysis --- predict the dynamic behavior
of programs without running them

At each execution step, what is the value of each variable?
intx,y, z;
read(&x);
if (x>0){y=x;z=1}
else{y=-x;z=2}

Cannot be answered precisely as program input is unknown

We don’t know the value of x, and therefore cannot predict which
branch will be taken (whether the value of x is greater than 0)

However, we can predict all the possible values for z and that y is
>= 0 at the end of code.

O Program analysis tries to
Give approximate answers
Prove properties of variables, functions, types

cs6363

o There are two ways to approximate behavior of programs

Over approximation: what may happen when all possible
inputs are considered?

The answer is a superset of what happens at runtime

Under approximation: what must always happen in spite of
different inputs?

The answer is a subset of what happens at runtime
o What approximation to use is problem specific

Should always err on the safe side

Example: if we want to remove all useless evaluations in the
program, should we find evaluations that may or must be useless?

o The relation between may and must analysis
Find all evaluations that are always useless (must analysis)
<=> find all evaluations that may be useful (may analysis)

cs6363 3

o Flow sensitivity: Is solution sensitive to program control flow?

Flow-insensitive analysis
Example: what variables may be accessed by a code?
Solution: find all the variables that appear in the code
Flow sensitive analysis
Example: what values a variable may have at each program point
A different solution must be found for each program point
0 Context sensitivity: Is solution sensitive to the calling context?
Context-insensitive
A single solution is computed for each function, no matter who calls it
Context-sensitive
Different solutions are computed for different chains of callers

o Path sensitivity? Is solution sensitive to execution paths?

Path sensitive: different solutions are computed for different
paths from program entry to each statement

cs6363 4

o What code are examined to find the solution?

Local analysis
Operate on a straight-line sequence of statements (a basic block)
Often used as basis for more advanced analysis approaches

Regional analysis
Operate on code with limited control flow, e.g., loops, conditionals
Useful for special-purpose optimizations (e.g., loop optimizations)

Global (intra-procedural) analysis
Operate on a single procedure/subroutine/function
Required by most flow-sensitive analysis problems

Whole-program (inter-procedural) analysis
Operate on an entire program (all sources must be available)
Required by context and path sensitive analysis

cs6363

O A family of techniques

Data flow analysis: operate on control-flow graph
Define a set of data to evaluate at entry and exit of each basic block
evaluate the flow of data between pred/succ basic blocks
Constraint based analysis

For each program entity to be analyzed, define a set of constraints involving
information of interest

Solve the constraint system via mathematical approaches
Abstract interpretation

Define a set of data to evaluate at each program point; Map each
statement/construct to a finite sequence of semantic actions

Statically interpret each instruction in program
Type and effect systems
Categorize different properties into a collection of types/groups
Infer the type/group of each program entity from how it is used
O Techniques differ in algorithmic methods, semantic foundations,
language paradigms
cs6363

FExample datas

low analysis: Reaching

ly =016

definition analysis

[y = x;]1

[z :=1;]2

while [y > 0]3 {

[z:=z"y]4

[y =y-1]5

}

[y ==CH]6 \\\\\\\\ﬁ; B4

DEDef | DefKill | RD | RD RD
Bl (1,2 56,4 |9 |9O %)
B2 | Y %) v 11,2,4,51(1,2,4,5

Domain: 124 5 6

B3 (4,5 1,2,6 s 11,2,4,51(1,2,4,5 VZZVYyYy
B4 | 6 1 s 11,2,4,51(1,2,4,5

cs6363

Foundation of data-tlow analysis---
Lattices

O Anordered set (L, <, V, A) is a lattice

= Ifx Ay and x V y exist for all x,yeL

= The join operation V: x V y is the least element >= x and y

= The meet operation A : X Ay is the greatest element <= xand y
O An lattice (L,<, A) is a complete lattice if

m Each subset Y C L has a least upper bound and a greatest lower bound

LeastUpperBound(Y) = Vmey M, GreatestLowerBound(Y) = A mevym
= All finite lattices are complete

= Example lattice that is not complete: the set of all integers I
For any x, y€I, X Ay = min(x,y), X Vy = max(Xx,y)
But LeastUpperBound(I) does not exist
= Example infinite complete lattice I U {\infty, -\infty}
O Each complete lattice has
= A top element: the least element

= A bottom element: the greatest element
cs6363 8

Termination of Datatlow Analysis

O A complete lattice L satisfies the finite ascending chain condition if
each ascending chain of L eventually stabilizes
m AsetSisachainifVx,y&S.y=sxorxs=y

m Ifl1<12 <13 = ..., then there is an upper bound In = In+1=In+2...

= This means starting from an arbitrary element e € L, one can only
increase e by a finite number of times before reaching an upper bound

o Application to Dataflow Analysis: dataflow information will be
lattice values

= Transfer functions operate on lattice values

= Solution algorithm will generate increasing sequence of values at each
program point

= Ascending chain condition will ensure termination

o Can use V (join) or A (meet) to combine values at control-flow
join points

cs6363 9

Constraint based Analysis
Example: control-tlow analysis

o0 The problem
= For each function call, what functions may be invoked?

O Syntax-directed analysis

» Reformulate the analysis specification
Construct a finite set of constraints based on structural induction

= Compute the least solution of the set of constraints

0 Each constraint has the form
(sol1 Csol2) or ({t}Csol) or ({t} C soll => sol2 C sol3)

= Each sol is either C([) ([is an expression, e.g., a call site) or P(x)
(x is a function parameter/function pointer)
= Eachtis a function definition

cs6363 10

Constraint-based Analysis

o For each expression/statement, compute a set of constraints
= Function definition

Cond[(fundef(f,x->e0))(] = Cond[e0] U
{ {fundef(f,x->e0)}C C([) } U { fundef(f,x->e0) C P(f) }
= Function call (allow functions to return functions as results)
Cond[((e1)(1 (e2)(2)[3] = Cond[e1] U Cond[e2] U
{{t} € C(l1)=>C([2) C P(x) V t = (fundef(f,x->e0) } // parameter

U {{t} € C([1)=> C(lo) C C(3) V t = (fundef(f,x->e0)} // result
= If conditional
Cond [(if (e0)lo then (e1)(1 else (e2)(2)(3] =
Cond[e0] U Cond[e1] U Cond[e2] U {C([2) C C(3)} U{C([2) C C(3) }

cs6363 11

O 0O

Input: a set of constraints for the entire program
Output: the least solution (C,P) to the constraints

Idea: equivalent to finding the least fixed point of a
monotone function defined by the constraints

Straight-forward iterative algorithm has n”~5 cost, where n is
the size of the program (expression)

A more sophisticated algorithm takes n”~3 complexity

The graph-based algorithm
Build a graph where
Each node n corresponds to a unique C(() or P(x) =>val(n)

Add an edge from node nl1 to n2 if any change to val(nl)
may require modifications to val(n2)

Use a worklist to keep track of nodes to change

cs6363 12

Example program with labels

struct Cell {
int val;
struct Cell* next;
}*h, "t *p;
[h =t=NULL;]1
for (int [i=0]2; [i<N]3; [++i]4) {
[p = new Cell(i,NULL);]5
if ((h == NULL]6)

[h=t=p:]7
else {
[t->next = p; t =p;]8

}
}

o Define the data to evaluate
A set of locations for each
pointer variable
Keep track of constant values
for non-pointer variables
o Define a semantic action for
each statement
Modifies the location set of
pointer variables
Allocate new locations
Limit the number of locations
for each stmt
Control flow (conditionals,
loops, and function calls)

Assume all branches are
taken when not sure

What locations can each pointer variable points to? (can they point to the

same location?)

cs6363 13

Abstract interpretation of points-to locations

[h=t=NULL;]1

[i=0;]2

»h->0t>0p->7?

if [i<N]3;

»h->01t->0p->7?

[p = new Cell(i,NULL);]5

»h->01t->0 p->7?

if ((h == NULL]6)

»h->0 t->0 p->new[5]

[h=t=p;]7

»h->0 t->0 p->newl[5]

[++i]4

» h ->new[5] t->new[5] p -> new[5]

if [i<N]3:;

» h ->new[5] t ->new[5] p -> new|[5]

[p = new Cell(i,NULL);]5

» h ->{0,new[5]} t->{0,new[5]} p ->{?,new[5]}

if ((h == NULL]6)

» h ->{0,new[5]} t->{0,new[5]} p -> new[5]

else {[t->next = p;t=p;]8

» h ->{0,new[5]} t->{0,new[5]} p -> new[5]

[++]4 if [i<N]3;

» h ->{0,new[5]} t->new[5] p -> new[5]
» Exit loop if evaluation has stopped changing

h ->{0,new[5]} t ->{0,new[5]} p ->{?,new[5]}

cs6363 14

Abstract Interpretation

Abstractinterpretation(op)
if (is_assignment(op))
modify_memory_from_assignment(memory(op), op)
else if (is_conditional(op)) then
Abstractinterpretation(cond(op));
Abstractinterpretation(tree_branch(op));
Abstractlinterpretation(false_branch(op));
else if (is_loop(op)) then
repeat
start_monitor_all_changes(memory(stmts(op)))
Abstractinterpretation(stmts(op))
until nothing changes in memory(stmts(op))
else if (is_procedural_call(op)) then
setup_parameters_and_return(op);
Abstractinterpretation(body(op));
else ...

cs6363

Example Solution

Abstract Interpretation

struct Cell {
int val;
struct Cell* next;
}*h, *t p;
[h =t=NULL;]1
for (int [i=0]2; [i<N]3; [++i]4) {
[p = new Cell(i,NULL);]5
if ((h == NULL]6)

[h=t=p;]7
else {
[t->next = p; t =p;]8

}
}

Domain: h,t,p

0 | h->? t->7? p->?

1 | h->0t->0 p->7?

2 | h->0 t->0 p->?

3 | h->0t->0 p->? h->{0,new[5]}
t->{0,new[5]}
p->{?,new[5]}

5| h->0t->0 h->{0,new[5]}
p->new[5] t->{0,new[5]}

p->new[5]

6 | h->0 t->0 h->{0,new[5]}
p->new[5] t->{0,new[5]}

p->new[5]

7 | h->new|[5] h->new[5]
t->new|[5] t->new|[5]
p->new[5] p->new[5]

8 h->new[5]
t->new|[5]
p->new[5]

4 | h->new|[5] h->new[5]

t->new|[5] t->new|[5]
p->new[5] p->new[5]

cs6363

16

Example program with labels

struct Cell {
int val;
struct Cell* next;
}*h, "t *p;
[h =t =NULL;]1
for (int [i=0]2; [i<N]3; [++i]4) {
[p = new Cell(i,NULL);]5
if ([h == NULL]6)
[h=t=p;]7
else {
[t->next = p; t = p;]8
}
}

O The type domain: locations
Each statement that allocates a
new location

Each variable that has a location

o Examine each statement and
infer a type (a group of
locations) for each pointer
variable

Each pointer variable can have
only a single type, no matter
where it appears

Flow insensitive

o If a distinct type is inferred for

each expression, then analysis
is flow sensitive

What locations can each pointer variable points to? (can they point to the

same location?)

cs6363 17

Applying type and etfect approach to points-

to analysis

Example program with labels

struct Cell {
int val;
struct Cell* next;
3, L s
[h =t =NULL;]1
for (int [i=0]2; [i<N]3; [++i]4) {
[p = new Cell(i,NULL);]5
if ((h == NULL]6)
[h=t=p;]7
else{
[t->next = p;t =p;]8
}

O

cs6363

The type domain includes
= NULL, new[5]
Examine the program text and

union all types (locations) for
each variable
= [h=t=NULL]1
H->NULL; t->NULL;
= [p = new Cell(i,NULL);]5
P-> new[5]
= [h=t=p;]7and [t = p;]8
Type(p) is a subset of Type(h)
Type(p) is a subset of Type(t)

Result:

= h=> {NULL,new[5]}
= t=> {NULL, new[5]}

= p=> new|[5]

Key: define typing rules

18

Type Inference based points-to analysis

Flow-insensitive type inference:

For each pointer variable v
do

Type(v) = {}

For each operation that
assigns a new set of
locations L to pointer v
do

Type(v) = Type(v) U L

h->{} t->{} p->{}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

cs6363

19

